On the construction of PIR schemes

Julien Lavauzelle

IRMAR, Université de Rennes 1

Séminaire CASYS 31/01/2019

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Transversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Fransversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Private information retrieval (PIR):

Given a **remote** database $F \in \Sigma^M$ and $i \in [1, M]$, can we **retrieve** the entry/file F_i , **without leaking** information on the index *i*? Private information retrieval (PIR):

Given a **remote** database $F \in \Sigma^M$ and $i \in [1, M]$, can we **retrieve** the entry/file F_i , **without leaking** information on the index *i*?

Trivial solution: full download.

Introduced in:

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Database *F* stored (in some way) on *n* servers S_1, \ldots, S_n , user *U* wants to recover F_i privately.

A Private Information Retrieval protocol is a set of algorithms (Q, A, R):

Introduced in:

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Database *F* stored (in some way) on *n* servers S_1, \ldots, S_n , user *U* wants to recover F_i privately.

A Private Information Retrieval protocol is a set of algorithms (Q, A, R): 1. U generates a query vector $q = (q_1, \dots, q_n) \leftarrow Q(i)$ and sends q_j to server S_j U U $(q_1, \dots, q_n) \leftarrow Q(i)$ (q_1, \dots, q_n) U $(q_1, \dots, q_n) \leftarrow Q(i)$ (q_1, \dots, q_n) U $(q_1, \dots, q_n) \leftarrow Q(i)$ (q_1, \dots, q_n) U $(q_1, \dots, q_n) \leftarrow Q(i)$ (q_1, \dots, q_n) (q_1, \dots, q_n) $(q_1, \dots, q_n$

Introduced in:

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Database *F* stored (in some way) on *n* servers S_1, \ldots, S_n , user *U* wants to recover F_i privately.

A Private Information Retrieval protocol is a set of algorithms (Q, A, R):

1. *U* generates a query vector $q = (q_1, ..., q_n) \leftarrow Q(i)$ and sends q_i to server S_i

2. Each server S_j computes $r_j = \mathcal{A}(q_j, F_{|S_j})$ and sends it back to U

Introduced in:

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Database *F* stored (in some way) on *n* servers S_1, \ldots, S_n , user *U* wants to recover F_i privately.

A Private Information Retrieval protocol is a set of algorithms (Q, A, R):

- 1. *U* generates a query vector $q = (q_1, ..., q_n) \leftarrow Q(i)$ and sends q_i to server S_i
- 2. Each server S_j computes $r_j = \mathcal{A}(q_j, F_{|S_j})$ and sends it back to U

3. *U* recovers
$$F_i = \mathcal{R}(q, r, i)$$

Privacy

A collusion of servers: set of servers $\{S_j : j \in T\}$, where $T \subset [1, n]$, which exchange information about queries, data, etc.

 $t \coloneqq \max\{|T|, T \subseteq [1, n] \text{ is a collusion}\} \ge 1$

Privacy

A collusion of servers: set of servers $\{S_j : j \in T\}$, where $T \subset [1, n]$, which exchange information about queries, data, etc.

```
t \coloneqq \max\{|T|, T \subseteq [1, n] \text{ is a collusion}\} \ge 1
```

• Information-theoretic privacy:

$$I(i; \boldsymbol{q}_{|T}) = 0, \quad \forall T \subseteq [1, n], |T| \le t.$$

• Computational privacy: by varying the index *i*, distributions of queries $q_{|T} = Q(i)_{|T}$ are computationally indistinguishable.

Privacy

A collusion of servers: set of servers $\{S_j : j \in T\}$, where $T \subset [1, n]$, which exchange information about queries, data, etc.

 $t \coloneqq \max\{|T|, T \subseteq [1, n] \text{ is a collusion}\} \ge 1$

• Information-theoretic privacy:

$$I(i; \boldsymbol{q}_{|T}) = 0, \quad \forall T \subseteq [1, n], |T| \le t.$$

• **Computational privacy:** by varying the index *i*, distributions of queries $q_{|T} = Q(i)_{|T}$ are computationally indistinguishable.

Theorem [CGKS95, CG97]. If t = n (in particular if n = 1), then:

- for IT-privacy, no better solution than full download,
- computational privacy is possible (but remains expensive as of now).

Main parameters of PIR schemes

We focus on **IT-privacy** (hence we need $n \ge 2$ servers)

We focus on **IT-privacy** (hence we need $n \ge 2$ servers)

Parameters to be taken into account:

- communication complexity (upload and download)
- computation complexity (client and servers)
- global server storage overhead
- maximum size of collusions (t)

We focus on **IT-privacy** (hence we need $n \ge 2$ servers)

Parameters to be taken into account:

- communication complexity (upload and download)
- computation complexity (client and servers)
- global server storage overhead
- maximum size of collusions (*t*)

Several possible settings:

- bounded vs. unbounded number of entries in the database
- replicated database vs. coded database
- small entries vs. large entries
- dynamic database vs. static database
- unresponsive or byzantine servers

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} , each storing a replica of F.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} , each storing a replica of F.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} , each storing a replica of F.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

$$- (X_1, X_2) \text{ to } S_{00},$$

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} , each storing a replica of F.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

$$\begin{array}{cccc} - & (X_1 & , & X_2 &) \text{ to } S_{00}, \\ - & (X_1 \Delta \{i_1\}, & X_2 &) \text{ to } S_{10}, \end{array}$$

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} , each storing a replica of F.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

$$\begin{array}{c} - (X_1, X_2) \text{ to } S_{00}, \\ - (X_1 \Delta \{i_1\}, X_2) \text{ to } S_{10}, \\ - (X_1, X_2 \Delta \{i_2\}) \text{ to } S_{01}, \end{array}$$

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} , each storing a replica of F.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

J. Lavauzelle

$$\begin{array}{ccc} - & (X_1 & X_2 &) \text{ to } S_{00}, \\ - & (X_1 \Delta \{i_1\}, & X_2 &) \text{ to } S_{10}, \end{array}$$

$$- (X_1, X_2\Delta\{i_2\}) \text{ to } S_{01}, \\ - (X_1\Delta\{i_1\}, X_2\Delta\{i_2\}) \text{ to } S_{11}.$$

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} , each storing a replica of F.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

1. *U* generates at random two subsets *X*₁, *X*₂ of [1, *L*]. Then *U* sends:

$$\begin{array}{l} - (X_1, X_2) \text{ to } S_{00}, \\ - (X_1 \Delta \{i_1\}, X_2) \text{ to } S_{10}, \\ - (X_1, X_2 \Delta \{i_2\}) \text{ to } S_{01}, \\ - (X_1 \Delta \{i_1\}, X_2 \Delta \{i_2\}) \text{ to } S_{11}. \end{array}$$

2. At reception of (Z_1, Z_2) , each server computes $a = \bigoplus_{z \in Z_1 \times Z_2} F_z$ and sends *a* to the user.

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:

- |F| = M bits, with $M = L^2$, and $[1, M] \simeq [1, L]^2$.
- ▶ n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$, each storing a replica of *F*.
- **Goal:** retrieve $F_i = F_{(i_1,i_2)}$, for $1 \le i_1, i_2 \le L$.

1. *U* generates at random two subsets *X*₁, *X*₂ of [1, *L*]. Then *U* sends:

$$\begin{array}{c} - (X_1, X_2) \text{ to } S_{00}, \\ - (X_1 \Delta\{i_1\}, X_2) \text{ to } S_{10}, \\ - (X_1, X_2 \Delta\{i_2\}) \text{ to } S_{01}, \\ (X_1, X_2 \Delta\{i_2\}) \text{ to } S_{01}, \end{array}$$

- $(X_1 \Delta\{i_1\}, X_2 \Delta\{i_2\}) \text{ to } S_{11}.$
- 2. At reception of (Z_1, Z_2) , each server computes $a = \bigoplus_{z \in Z_1 \times Z_2} F_z$ and sends *a* to the user.
- 3. User XORs the 4 bits and retrieves F_i .

J. Lavauzelle

Features of the PIR scheme in [CGKS'95-98]

Correct, and **secure** if no collusion.

Correct, and secure if no collusion.

With n = 4 servers:

- **Communication:** $8\sqrt{M}$ uploaded bits, 4 downloaded bits,
- **Storage:** replication of *F* over 4 servers,
- Complexity:
 - for each server: in average, XOR of $(L/2)^2 = M/4$ bits
 - for the user: XOR of n = 4 bits.

Correct, and secure if no collusion.

With n = 4 servers:

- **Communication:** $8\sqrt{M}$ uploaded bits, 4 downloaded bits,
- Storage: replication of F over 4 servers,
- Complexity:
 - for each server: in average, XOR of $(L/2)^2 = M/4$ bits
 - for the user: XOR of n = 4 bits.

Generalisable to $n = 2^b$ servers:

- Communication: b2^bM^{1/b} = n log(n)M^{1/log(n)} uploaded bits, n downloaded bits,
- Storage: replication of F over n servers,
- Complexity:
 - ▶ for each server: in average, XOR of *M*/*n* bits
 - ▶ for the user: XOR of *n* bits.

- 1995: first definition [CGKS95]
- 2000: reduction from smooth locally decodable codes [KT00]
- 2000-10's: many improvements
 - PIR with 3 servers and subpolynomial communication [Yek08, Efr09]
 - PIR with 2 servers and subpolynomial communication [DG16]
 - lower storage overhead with PIR codes [FVY15]
- 2016-now: capacity-achieving schemes, schemes dedicated to storage systems
 - capacity of PIR [SJ17, BU18]
 - (nearly) capacity-achieving schemes [SRR14, CHY15, TR16, ...]

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Iransversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Outline

1. Private information retrieval

2. PIR schemes for common storage systems Distributed storage systems

A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Iransversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Context

Storage systems use codes to cope with node failures.

- Before 2010: mostly replication or parity-check.
- ▶ 2010's: MDS storage (*e.g.* [14, 10] Reed-Solomon code for Facebook).
- ▶ Recently: codes with locality (*e.g.* Hadoop Xorbas).

Context

Storage systems use codes to cope with node failures.

- Before 2010: mostly replication or parity-check.
- ▶ 2010's: MDS storage (*e.g.* [14, 10] Reed-Solomon code for Facebook).
- ▶ Recently: codes with locality (*e.g.* Hadoop Xorbas).

Given a code C of length n:

Definition (Reed-Solomon code). Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$, pairwise distinct. $\operatorname{RS}_q(k, n) := \{(f(x_1), \dots, f(x_n)), f \in \mathbb{F}_q[X], \deg f < k\}$ **Definition** (Reed-Solomon code). Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$, pairwise distinct. $\operatorname{RS}_q(k, n) \coloneqq \{(f(x_1), \dots, f(x_n)), f \in \mathbb{F}_q[X], \operatorname{deg} f < k\}$

 $C = RS_q(k, n)$ is **MDS**:

- every codeword c ∈ C can be reconstructed from any k-subset of coordinates of c,
- ▶ any subset of $d^{\perp}(C) 1 = k$ coordinates of *c* are independent.

Definition (Reed-Solomon code). Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$, pairwise distinct. $\operatorname{RS}_q(k, n) \coloneqq \{(f(x_1), \dots, f(x_n)), f \in \mathbb{F}_q[X], \operatorname{deg} f < k\}$

 $C = RS_q(k, n)$ is **MDS**:

- every codeword c ∈ C can be reconstructed from any k-subset of coordinates of c,
- ▶ any subset of $d^{\perp}(C) 1 = k$ coordinates of *c* are independent.

File storage:

a file $F_i \in \Sigma \simeq \mathbb{F}_{q^s}^k$ is encoded into $c_i \in \mathrm{RS}_q(k, n) \otimes \mathbb{F}_{q^s}$

Definition (Reed-Solomon code). Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$, pairwise distinct. $\operatorname{RS}_q(k, n) \coloneqq \{(f(x_1), \dots, f(x_n)), f \in \mathbb{F}_q[X], \operatorname{deg} f < k\}$

 $C = RS_q(k, n)$ is **MDS**:

- every codeword c ∈ C can be reconstructed from any k-subset of coordinates of c,
- ▶ any subset of $d^{\perp}(C) 1 = k$ coordinates of *c* are independent.

File storage:

a file $F_i \in \Sigma \simeq \mathbb{F}_{q^s}^k$ is encoded into $c_i \in \mathrm{RS}_q(k, n) \otimes \mathbb{F}_{q^s}$

Main assumption (can be discussed):

 $s \gg M$

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems

A PIR scheme on RS-coded databases

A PIR scheme with regenerating codes

3. PIR schemes with low computation

Transversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion
Presentation

Usual goal (assuming $s \gg M$): a large *PIR rate*

$$\rho \coloneqq \frac{|F_i|}{|\mathbf{r}|}.$$

Presentation

Usual goal (assuming $s \gg M$): a large *PIR rate*

$$\rho \coloneqq \frac{|F_i|}{|\mathbf{r}|} \,.$$

Next, we present a PIR scheme for RS-coded databases.

- Originally [TR16], then extended and reformulated [TGKFH18, TGR18].
- Scalable.
- Optimal PIR rate for t = 1 and $M \to \infty$.
- PIR rate conjectured optimal for $M \to \infty$.

TR16] *PIR from MDS Coded Data in Distributed Storage Systems*. Tajeddine, El Rouayheb. ISIT. **2016**.

 []] [TGKFH18] Robust PIR from Coded Systems with Byzantine and Colluding Servers.

 Tajeddine, Gnilke, Karpuk, Freij-Hollanti, Hollanti. ISIT. 2018.

TGR18] *PIR from MDS Coded Data in Distributed Storage Systems*. Tajeddine, Gnilke, El Rouayheb. IEEE-TIT. **2018**.

Notation:

$$a \star b := (a_1 b_1, \dots, a_n b_n)$$

$$\mathcal{C} \star \mathcal{C}' := \langle \{ c \star c' \mid c \in \mathcal{C}, c' \in \mathcal{C}' \} \rangle$$

Notation:

$$a \star b := (a_1 b_1, \dots, a_n b_n)$$

$$\mathcal{C} \star \mathcal{C}' := \langle \{ \boldsymbol{c} \star \boldsymbol{c}' \mid \boldsymbol{c} \in \mathcal{C}, \boldsymbol{c}' \in \mathcal{C}' \} \rangle$$

System parameters:

 $C \subseteq \mathbb{F}_q^n$ the *storage code*, $C \in C^M$ the coded database $\mathcal{D} \subseteq \mathbb{F}_q^n$ a *query code* of dual distance $d^{\perp}(\mathcal{D}) = t + 1$ $J \subseteq [1, n]$ an information set for $C \star \mathcal{D}$, and $\overline{J} := [1, n] \setminus J$

Notation:

$$a \star b := (a_1 b_1, \dots, a_n b_n)$$

$$\mathcal{C} \star \mathcal{C}' := \langle \{ \boldsymbol{c} \star \boldsymbol{c}' \mid \boldsymbol{c} \in \mathcal{C}, \boldsymbol{c}' \in \mathcal{C}' \} \rangle$$

System parameters:

 $C \subseteq \mathbb{F}_q^n$ the *storage code*, $C \in C^M$ the coded database $\mathcal{D} \subseteq \mathbb{F}_q^n$ a *query code* of dual distance $d^{\perp}(\mathcal{D}) = t + 1$ $J \subseteq [1, n]$ an information set for $C \star \mathcal{D}$, and $\overline{J} := [1, n] \setminus J$

Queries:

- 1. the user generates at random *M* words $d_1, \ldots, d_M \in \mathcal{D}$ and defines *Q* as follows:
- 2. the *j*-th column of Q is sent to server S_j

Notation:

$$a \star b := (a_1 b_1, \dots, a_n b_n)$$

$$\mathcal{C} \star \mathcal{C}' := \langle \{ \boldsymbol{c} \star \boldsymbol{c}' \mid \boldsymbol{c} \in \mathcal{C}, \boldsymbol{c}' \in \mathcal{C}' \} \rangle$$

System parameters:

 $C \subseteq \mathbb{F}_q^n$ the *storage code*, $C \in C^M$ the coded database $\mathcal{D} \subseteq \mathbb{F}_q^n$ a *query code* of dual distance $d^{\perp}(\mathcal{D}) = t + 1$ $J \subseteq [1, n]$ an information set for $C \star \mathcal{D}$, and $\overline{J} := [1, n] \setminus J$

Queries:

- 1. the user generates at random *M* words $d_1, \ldots, d_M \in \mathcal{D}$ and defines *Q* as follows:
- 2. the *j*-th column of Q is sent to server S_j

Remark: queries remain private against collusions of servers of size $\leq t$.

Server answers: server S_j receives as a query a column $\mathbf{Q}^{(j)} \in \mathbb{F}_q^M$ of \mathbf{Q} ,

Server answers: server S_j receives as a query a column $\mathbf{Q}^{(j)} \in \mathbb{F}_q^M$ of \mathbf{Q} , and has to compute

$$r_j = \langle \mathbf{Q}^{(j)}, \mathbf{C}^{(j)} \rangle \in \mathbb{F}_q.$$

Server answers: server S_j receives as a query a column $\mathbf{Q}^{(j)} \in \mathbb{F}_q^M$ of \mathbf{Q} , and has to compute

$$r_j = \langle \mathbf{Q}^{(j)}, \mathbf{C}^{(j)} \rangle \in \mathbb{F}_q.$$

Reconstruction:

Server answers: server S_j receives as a query a column $\mathbf{Q}^{(j)} \in \mathbb{F}_q^M$ of \mathbf{Q} , and has to compute

$$r_j = \langle \mathbf{Q}^{(j)}, \mathbf{C}^{(j)} \rangle \in \mathbb{F}_q.$$

Reconstruction: The user collects

$$\mathbf{r} = (r_1, \dots, r_n) = \underbrace{\sum_{m=1}^{M} d_m \star c_m}_{\in \mathcal{C} \star \mathcal{D}} + \underbrace{\mathbf{1}_{\bar{J}} \star c_i}_{=c_i \text{ on } \bar{J}}$$

Server answers: server S_j receives as a query a column $\mathbf{Q}^{(j)} \in \mathbb{F}_q^M$ of \mathbf{Q} , and has to compute

$$r_j = \langle \mathbf{Q}^{(j)}, \mathbf{C}^{(j)} \rangle \in \mathbb{F}_q.$$

Reconstruction: The user collects

$$\mathbf{r} = (r_1, \dots, r_n) = \underbrace{\sum_{m=1}^{M} d_m \star c_m}_{\in \mathcal{C} \star \mathcal{D}} + \underbrace{\mathbf{1}_{\overline{J}} \star c_i}_{=c_i \text{ on } \overline{J}}$$

and interpolates on J to recover

$$-\sum_{m=1}^{M} d_m \star c_m,$$

- then $c_i[|\overline{J}]$.

Features for 1 run of the protocol.

- download cost: *n* symbols over \mathbb{F}_{q^s}
- upload cost: an $(M \times n)$ -matrix over \mathbb{F}_q (negligible if $s \gg M$)
- ▶ retrieval of $|\overline{J}| = n \dim(\mathcal{C} \star \mathcal{D})$ symbols of the desired file
- the protocol is **private** against collusions of size $\leq d^{\perp}(\mathcal{D}) 1$

Features for 1 run of the protocol.

- download cost: *n* symbols over \mathbb{F}_{q^s}
- upload cost: an $(M \times n)$ -matrix over \mathbb{F}_q (negligible if $s \gg M$)
- ▶ retrieval of $|\overline{J}| = n \dim(\mathcal{C} \star \mathcal{D})$ symbols of the desired file
- the protocol is **private** against collusions of size $\leq d^{\perp}(\mathcal{D}) 1$

For **Reed-Solomon codes**: $C = RS_q(k, n)$ and $D = RS_q(t, n)$:

 $d^{\perp}(\mathcal{D}) - 1 = t$ and $\mathcal{C} \star \mathcal{D} = \mathrm{RS}_q(k + t - 1, n) \Rightarrow |\overline{J}| = n - k - t + 1$

Features for 1 run of the protocol.

- download cost: *n* symbols over \mathbb{F}_{q^s}
- upload cost: an $(M \times n)$ -matrix over \mathbb{F}_q (negligible if $s \gg M$)
- ▶ retrieval of $|\overline{J}| = n \dim(\mathcal{C} \star \mathcal{D})$ symbols of the desired file
- the protocol is **private** against collusions of size $\leq d^{\perp}(\mathcal{D}) 1$

For **Reed-Solomon codes**: $C = RS_q(k, n)$ and $D = RS_q(t, n)$:

$$d^{\perp}(\mathcal{D}) - 1 = t$$
 and $\mathcal{C} \star \mathcal{D} = \mathrm{RS}_q(k + t - 1, n) \Rightarrow |\overline{J}| = n - k - t + 1$

If (n - k - t + 1) | k, then **repeating** several runs gives a (download) **PIR rate**:

$$\rho=\frac{n-k-t+1}{n}=1-\frac{k+t-1}{n}$$

Features for 1 run of the protocol.

- download cost: *n* symbols over \mathbb{F}_{q^s}
- upload cost: an $(M \times n)$ -matrix over \mathbb{F}_q (negligible if $s \gg M$)
- ▶ retrieval of $|\overline{J}| = n \dim(\mathcal{C} \star \mathcal{D})$ symbols of the desired file
- the protocol is **private** against collusions of size $\leq d^{\perp}(\mathcal{D}) 1$

For **Reed-Solomon codes**: $C = RS_q(k, n)$ and $D = RS_q(t, n)$:

$$d^{\perp}(\mathcal{D}) - 1 = t$$
 and $\mathcal{C} \star \mathcal{D} = \mathrm{RS}_q(k + t - 1, n) \Rightarrow |\overline{J}| = n - k - t + 1$

If (n - k - t + 1) | k, then **repeating** several runs gives a (download) **PIR rate**:

$$\rho=\frac{n-k-t+1}{n}=1-\frac{k+t-1}{n}$$

Otherwise, striping methods allow to achieve the same PIR rate.

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Transversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Regenerating codes

!!! Sorry for the notation **!!!**

!!! Sorry for the notation **!!!**

Definition: C is an $(n, k, d, \alpha, \beta, B)$ -regenerating code if:

- C is a linear space of dimension *B*, consisting in $(\alpha \times n)$ -matrices over \mathbb{F}_{q} ,
- every $c \in C$ is fully determined by any *k*-subset of columns,
- ► every column of *c* can be "repaired", by downloading $\beta \le \alpha$ symbols from any *d*-subset of columns (hence $d\beta \ge \alpha$).

!!! Sorry for the notation **!!!**

Definition: C is an $(n, k, d, \alpha, \beta, B)$ -regenerating code if:

- *C* is a linear space of dimension *B*, consisting in $(\alpha \times n)$ -matrices over \mathbb{F}_q ,
- every $c \in C$ is fully determined by any *k*-subset of columns,
- ► every column of *c* can be "repaired", by downloading $\beta \le \alpha$ symbols from any *d*-subset of columns (hence $d\beta \ge \alpha$).

Main bound (cut-set bound [WDR07]):

$$B \leq \sum_{i=0}^{k-1} \min(\alpha, (d-i)\beta).$$

!!! Sorry for the notation **!!!**

Definition: C is an $(n, k, d, \alpha, \beta, B)$ -regenerating code if:

- *C* is a linear space of dimension *B*, consisting in $(\alpha \times n)$ -matrices over \mathbb{F}_q ,
- every $c \in C$ is fully determined by any *k*-subset of columns,
- ► every column of *c* can be "repaired", by downloading $\beta \le \alpha$ symbols from any *d*-subset of columns (hence $d\beta \ge \alpha$).

Main bound (cut-set bound [WDR07]):

$$B \leq \sum_{i=0}^{k-1} \min(\alpha, (d-i)\beta).$$

A particular optimal point (minimum-bandwidth repair, MBR): $d\beta = \alpha$. Then,

$$B = \left(kd - \frac{k(k-1)}{2}\right)\beta.$$

15/28

Deptimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. **2011**.

We set $\beta = 1$, hence $\alpha = d$.

Deptimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. **2011**.

We set $\beta = 1$, hence $\alpha = d$.

1. Message symbols are arranged in a $(d \times d)$ -matrix

 $A = \begin{pmatrix} S & T^\top \\ T & \mathbf{0} \end{pmatrix}$

where *S* is $(k \times k)$ -symmetric.

Deptimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. **2011**.

We set $\beta = 1$, hence $\alpha = d$.

1. Message symbols are arranged in a $(d \times d)$ -matrix

 $A = \begin{pmatrix} S & T^\top \\ T & \mathbf{0} \end{pmatrix}$

where *S* is $(k \times k)$ -symmetric.

2. Let *G* be a $(d \times n)$ generator matrix for $RS_q(d, n)$, echelonized in degree (*i.e.* a Vandermonde matrix). Codewords are then:

$$C = AG \in \mathbb{F}_q^{d \times n}$$
.

Deptimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. **2011**.

We set $\beta = 1$, hence $\alpha = d$.

1. Message symbols are arranged in a $(d \times d)$ -matrix

 $A = \begin{pmatrix} S & T^\top \\ T & \mathbf{0} \end{pmatrix}$

where *S* is $(k \times k)$ -symmetric.

2. Let *G* be a $(d \times n)$ generator matrix for $RS_q(d, n)$, echelonized in degree (*i.e.* a Vandermonde matrix). Codewords are then:

$$\boldsymbol{C} = \boldsymbol{A}\boldsymbol{G} \in \mathbb{F}_q^{d \times n}$$
.

Remark: row *C_i* of *C* is a word of a RS code

- of dimension k, if j > k,
- of dimension *d* > *k* otherwise.

J. Lavauzelle

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_i , then row A_i .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_i , then row A_i .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_i , then row A_i .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_i , then row A_i .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

PIR scheme on PM-MBR codes with no collusion

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine, Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

PIR scheme with **no collusion** (t = 1).

- For row j = d down to k + 1:
 - Run a RS(*k*)-coded PIR scheme with randomness *D*.
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .
- For row j = k down to 1:
 - Run a RS(*j*)-coded PIR scheme with randomness *D*.
 - Use symmetry of *A* and previously recovered data for the reconstruction (high-degree terms can be eliminated).
 - Interpolate random values $\sum d_m \star C_{j,m}$.
 - Recover row C_j , then row A_j .

PIR scheme on PM-MBR codes

We get a PIR rate:

$$\rho = \frac{1 - \frac{k}{n}}{1 - \frac{k(k+1)(k-1)}{nB}} > 1 - \frac{k}{n}$$

PIR scheme on PM-MBR codes

We get a PIR rate:

Comparison of PIR rates for n = 40 and k = 7.

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Transversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Previous schemes:

- low communication complexity
- computationally inefficient (linear in $|F| = \sum_{m=1}^{M} |F_m|$)

Our goal:

- optimal computation ($|r_i|$ for each server S_i)
- remove the assumption $s \gg M$
- moderate communication complexity

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation Transversal designs and codes

A PIR scheme with transversal designs Instances

4. Conclusion

. . .

A transversal design $TD(n, s) = (X, \mathcal{B}, \mathcal{G})$ is given by:

- *X* a set of *points*, |X| = N = ns,
- groups $\mathcal{G} = \{G_i\}_{1 \le i \le n}$ satisfying

$$X = \prod_{j=1}^{n} G_j$$
 and $|G_j| = s$,

A transversal design $TD(n, s) = (X, \mathcal{B}, \mathcal{G})$ is given by:

- X a set of *points*, |X| = N = ns,
- groups $\mathcal{G} = \{G_i\}_{1 \le i \le n}$ satisfying

$$X = \coprod_{j=1}^{n} \frac{G_j}{G_j}$$
 and $|G_j| = s$,

- *blocks* $B \in \mathcal{B}$ satisfying
 - $B \subset X$ and |B| = n; - for all $\{i, j\} \subset X$, $\{i, j\}$ lie:

either in a single group $G \in \mathcal{G}$, or in a unique block $B \in \mathcal{B}$

Let \mathcal{T} be a transversal design $\text{TD}(n, s) = (X, \mathcal{B}, \mathcal{G})$.

Its **incidence matrix** *M* has size $|\mathcal{B}| \times |X|$ and is defined by:

$$M_{i,j} = \begin{cases} 1 & \text{if } x_j \in B_i \\ 0 & \text{otherwise.} \end{cases}$$

Let \mathcal{T} be a transversal design $\text{TD}(n, s) = (X, \mathcal{B}, \mathcal{G})$.

Its **incidence matrix** *M* has size $|\mathcal{B}| \times |X|$ and is defined by:

$$M_{i,j} = \begin{cases} 1 & \text{if } x_j \in B_i \\ 0 & \text{otherwise.} \end{cases}$$

The code C based on T over \mathbb{F}_q is the \mathbb{F}_q -linear code admitting M as a parity-check matrix (C^{\perp} is generated by M).

- length(C) = |X|,
- $\dim(\mathcal{C}) = \dim(\ker M)$,
- every $B \in \mathcal{B}$ gives an $h \in \mathcal{C}^{\perp}$ such that $wt(h_{|G_i}) = 1, \forall j = 1, ..., n$.

Example

The transversal design TD(3, 3) represented by:

gives an incidence matrix

Its rank over \mathbb{F}_3 is 6 \implies the associated code \mathcal{C} is a [9,3]₃ code.

22/28

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Transversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

The PIR scheme

Let $C \subseteq \mathbb{F}_q^N$ be a code based on a TD(n, s).

The PIR scheme

Let $C \subseteq \mathbb{F}_q^N$ be a code based on a TD(n, s).

• Initialisation. User *U* encodes $F \mapsto c \in C$, and gives $c_{|G_i|}$ to server S_j .

The PIR scheme

Let $C \subseteq \mathbb{F}_q^N$ be a code based on a TD(n, s).

• Initialisation. User *U* encodes $F \mapsto c \in C$, and gives $c_{|G_i|}$ to server S_j .

• To recover
$$F_i = c_i$$
, with $i \in X$:

1. User *U* randomly picks a block $B \in \mathcal{B}$ containing *i*. Then *U* defines:

$$q_j = \mathcal{Q}(i)_j := \begin{cases} \text{unique } \in B \cap G_j & \text{if } i \notin G_j \\ \text{a random point in } G_j & \text{otherwise.} \end{cases}$$

- 2. Each server S_i sends back c_{q_i}
- 3. *U* recovers

$$c_i = -\sum_{j: i \notin G_j} c_{q_j} = -\sum_{b \in B \setminus \{i\}} c_b$$

Theorem. This PIR protocol is information-theoretically private.

Proof:

- the only server which holds *F*_i received a random query;
- − for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.

Theorem. This PIR protocol is information-theoretically private.

Proof:

- the only server which holds F_i received a random query;
- − for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.

Features.

- ▶ communication complexity: *n* log *s* uploaded bits, *n* log *q* downloaded bits
- computational complexity:
 - only 1 read for each server (somewhat optimal)
 - $\leq n$ additions over \mathbb{F}_q for the user
- ▶ storage overhead: $(ns M) \log q$ bits, where $M = \dim(C)$

Theorem. This PIR protocol is information-theoretically private.

Proof:

- the only server which holds F_i received a random query;
- − for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.

Features.

- communication complexity: n log s uploaded bits, n log q downloaded bits
- computational complexity:
 - only 1 read for each server (somewhat optimal)
 - $\leq n$ additions over \mathbb{F}_q for the user
- ▶ storage overhead: $(ns M) \log q$ bits, where $M = \dim(C)$

Question: transversal designs with good dim(C) depending on (n,s)?

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Transversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Instances with geometric designs

 $\mathcal{T}_{A},$ the classical affine transversal design:

- $X = \mathbb{F}_q^m, m \ge 2$,
- G a set of q disjoint hyperplanes partitionning X,
- $\mathcal{B} = \{ affine lines L secant to each group of <math>\mathcal{G} \}.$

The code has: - length $ns = q^m$, - "locality" n = q.

Instances with geometric designs

 \mathcal{T}_A , the classical affine transversal design:

- ► $X = \mathbb{F}_q^m, m \ge 2$,
- G a set of q disjoint hyperplanes partitionning X,
- $\mathcal{B} = \{ affine lines L secant to each group of <math>\mathcal{G} \}.$

The code has: - length $ns = q^m$, - "locality" n = q.

Instances with geometric designs

 \mathcal{T}_A , the classical affine transversal design:

- $X = \mathbb{F}_q^m, m \ge 2$,
- G a set of q disjoint hyperplanes partitionning X,
- $\mathcal{B} = \{ affine lines L secant to each group of <math>\mathcal{G} \}.$

The code has: - length $ns = q^m$, - "locality" n = q.

Question: better instances?

25/28

J. Lavauzelle

An **orthogonal array** OA(t, n, s) of strength *t* is a list *A* of words

- of length *n*,
- over a finite set S, |S| = s,
- such that, for every $I \subset [1, n]$ of size $t, A_{|I} = S^t$.

Equivalently, an OA(t, n, s) is a code $A \subset S^n$ with dual distance t + 1.

$$S = \{a, b\}$$
$$OA(2, 3, 2) = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$$

26/28

An **orthogonal array** OA(t, n, s) of strength *t* is a list *A* of words

- of length *n*,
- over a finite set *S*, |S| = s,
- such that, for every $I \subset [1, n]$ of size $t, A_{|I} = S^t$.

Equivalently, an OA(t, n, s) is a code $A \subset S^n$ with dual distance t + 1.

$$S = \{a, b\}$$
Construction OA \rightarrow TD:
• $X = S \times [1, n]$
• $\mathcal{G} = \{S \times \{i\}, 1 \le i \le n\}$
OA(2, 3, 2) =
$$\begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$$

$$(a, 1) \qquad (a, 2) \qquad (a, 3) \\ (b, 1) \qquad (b, 2) \qquad (b, 3)$$

 \triangleright X = S

An **orthogonal array** OA(t, n, s) of strength *t* is a list *A* of words

- of length *n*,
- over a finite set S, |S| = s,
- such that, for every $I \subset [1, n]$ of size $t, A_{|I} = S^t$.

Equivalently, an OA(t, n, s) is a code $A \subset S^n$ with dual distance t + 1.

$$S = \{a, b\}$$
Construction OA \rightarrow TD:
• $X = S \times [1, n]$
• $\mathcal{G} = \{S \times \{i\}, 1 \le i \le n\}$
• $\mathcal{B} = \{\{(c_i, i), 1 \le i \le n\}, c \in OA\}$

$$(a, 1)$$

$$(a, 2)$$

$$(a, 3)$$

$$(b, 1)$$

$$(b, 2)$$

$$(b, 3)$$

An **orthogonal array** OA(t, n, s) of strength *t* is a list *A* of words

- of length *n*,
- over a finite set *S*, |S| = s,
- such that, for every $I \subset [1, n]$ of size $t, A_{|I} = S^t$.

Equivalently, an OA(t, n, s) is a code $A \subset S^n$ with dual distance t + 1.

$$S = \{a, b\}$$

$$OA(2, 3, 2) = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$$

$$OA\}$$

$$(a, 1)$$

$$(b, 1)$$

$$(b, 2)$$

$$(a, 3)$$

$$(b, 3)$$

(0,2)

Construction $OA \rightarrow TD$:

- $\blacktriangleright X = S \times [1, n]$
- $\mathcal{G} = \{S \times \{i\}, 1 \le i \le n\}$

J. Lavauzelle

• $\mathcal{B} = \{\{(c_i, i), 1 \le i \le n\}, c \in \mathbf{Q}\}$

(0, 1)

(. 1.)

An **orthogonal array** OA(t, n, s) of strength *t* is a list *A* of words

- of length *n*,
- over a finite set S, |S| = s,
- such that, for every $I \subset [1, n]$ of size $t, A_{|I} = S^t$.

Equivalently, an OA(t, n, s) is a code $A \subset S^n$ with dual distance t + 1.

$$S = \{a, b\}$$

Construction $OA \rightarrow TD$:

- $X = S \times [1, n]$
- $\mathcal{G} = \{S \times \{i\}, 1 \le i \le n\}$
- $\blacktriangleright \mathcal{B} = \{\{(c_i, i), 1 \le i \le n\}, c \in \mathsf{OA}\}\}$

Resisting collusions

Proposition. For t = 2, an OA(t, n, s) gives a TD(n, s).

Proposition. For t = 2, an OA(t, n, s) gives a TD(n, s).

Experimentally, for t = 2 and small n and s, codes based on classical affine TDs have the largest dimension.

Proposition. For t = 2, an OA(t, n, s) gives a TD(n, s).

Experimentally, for t = 2 and small n and s, codes based on classical affine TDs have the largest dimension.

For $t \ge 3$, we get TDs such that:

for every *t*-set *T* of points lying in *t* different groups, there exists a unique block $B \in \mathcal{B}$ such that $T \subset B$.

 \Rightarrow The PIR protocol resists t - 1 colluding servers.

Proposition. For t = 2, an OA(t, n, s) gives a TD(n, s).

Experimentally, for t = 2 and small n and s, codes based on classical affine TDs have the largest dimension.

For $t \ge 3$, we get TDs such that:

for every *t*-set *T* of points lying in *t* different groups, there exists a unique block $B \in \mathcal{B}$ such that $T \subset B$.

 \Rightarrow The PIR protocol resists t - 1 colluding servers.

- OAs with t > 2 exist (*e.g.* from Reed-Solomon codes)
- But associated TDs lead to codes with poor rates (except for $t \ll n$)

Private Information Retrieval from Transversal Designs. L. IEEE-TIT. **2019**.

Outline

1. Private information retrieval

2. PIR schemes for common storage systems

Distributed storage systems A PIR scheme on RS-coded databases A PIR scheme with regenerating codes

3. PIR schemes with low computation

Fransversal designs and codes A PIR scheme with transversal designs Instances

4. Conclusion

Private information retrieval:

- concentrated a lot of recent research,
- involves nice mathematical tools,
- but in practice ... relies on questionable assumptions (collusions, size of entries, communication channels)

Private information retrieval:

- concentrated a lot of recent research,
- involves nice mathematical tools,
- but in practice ... relies on questionable assumptions (collusions, size of entries, communication channels)

Questions?