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Problem statement

Private information retrieval (PIR):

Given a remote database F ∈ ΣM and i ∈ [1, M],
can we retrieve the entry/file Fi,

without leaking information on the index i?

Trivial solution: full download.
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Definition of PIR

Introduced in:
Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Database F stored (in some way) on n servers S1, . . . , Sn,
user U wants to recover Fi privately.

A Private Information Retrieval protocol is a set of algorithms (Q,A,R):

1. U generates a query vector
q = (q1, . . . , qn)← Q(i) and
sends qj to server Sj

2. Each server Sj computes
rj = A(qj, F|Sj

) and sends it
back to U

3. U recovers Fi = R(q, r, i)

U . . .

S1 S2 Sn

(q1, . . . , qn)

(r1, . . . , rn)
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Privacy

A collusion of servers: set of servers {Sj : j ∈ T}, where T ⊂ [1, n], which
exchange information about queries, data, etc.

t := max{|T|, T ⊆ [1, n] is a collusion} ≥ 1

• Information-theoretic privacy:

I(i; q|T) = 0, ∀T ⊆ [1, n], |T| ≤ t.

• Computational privacy: by varying the index i, distributions of queries
q|T = Q(i)|T are computationally indistinguishable.

Theorem [CGKS95, CG97]. If t = n (in particular if n = 1), then:
I for IT-privacy, no better solution than full download,
I computational privacy is possible (but remains expensive as of now).
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Main parameters of PIR schemes

We focus on IT-privacy
(hence we need n ≥ 2 servers)

Parameters to be taken into account:

– communication complexity (upload and download)

– computation complexity (client and servers)

– global server storage overhead

– maximum size of collusions (t)

Several possible settings:

– bounded vs. unbounded number of entries in the database

– replicated database vs. coded database

– small entries vs. large entries

– dynamic database vs. static database

– unresponsive or byzantine servers
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Seminal work [CGKS’95-98]

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings:
I |F| = M bits, with M = L2, and [1, M] ' [1, L]2.
I n = 4 servers S00, S01, S10, S11, each storing a replica of F.
I Goal: retrieve Fi = F(i1,i2), for 1 ≤ i1, i2 ≤ L.

i1

i2

X1

X2 XOR this data

XORed 4×XORed 2×

XORed 1×

1. U generates at random two subsets X1, X2
of [1, L]. Then U sends:

– ( X1 , X2 ) to S00,
– (X1∆{i1}, X2 ) to S10,
– ( X1 , X2∆{i2}) to S01,
– (X1∆{i1}, X2∆{i2}) to S11.

2. At reception of (Z1, Z2), each server
computes a =

⊕
z∈Z1×Z2

Fz and sends a to
the user.

3. User XORs the 4 bits and retrieves Fi.
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Features of the PIR scheme in [CGKS’95-98]

Correct, and secure if no collusion.

With n = 4 servers:
I Communication: 8

√
M uploaded bits, 4 downloaded bits,

I Storage: replication of F over 4 servers,
I Complexity:

I for each server: in average, XOR of (L/2)2 = M/4 bits
I for the user: XOR of n = 4 bits.

Generalisable to n = 2b servers:
I Communication: b2bM1/b = n log(n)M1/log(n) uploaded bits, n

downloaded bits,
I Storage: replication of F over n servers,
I Complexity:

I for each server: in average, XOR of M/n bits
I for the user: XOR of n bits.
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(Short) state of the art

• 1995: first definition [CGKS95]

• 2000: reduction from smooth locally decodable codes [KT00]

• 2000-10’s: many improvements
I PIR with 3 servers and subpolynomial communication [Yek08, Efr09]
I PIR with 2 servers and subpolynomial communication [DG16]
I lower storage overhead with PIR codes [FVY15]

• 2016-now: capacity-achieving schemes, schemes dedicated to storage systems
I capacity of PIR [SJ17, BU18]
I (nearly) capacity-achieving schemes [SRR14, CHY15, TR16, ...]
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Context

Storage systems use codes to cope with node failures.
I Before 2010: mostly replication or parity-check.
I 2010’s: MDS storage (e.g. [14, 10] Reed-Solomon code for Facebook).
I Recently: codes with locality (e.g. Hadoop Xorbas).

Given a code C of length n:

S1 S2 Sn

c1 ∈ C
c2 ∈ C

cM ∈ C

9/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



Context

Storage systems use codes to cope with node failures.
I Before 2010: mostly replication or parity-check.
I 2010’s: MDS storage (e.g. [14, 10] Reed-Solomon code for Facebook).
I Recently: codes with locality (e.g. Hadoop Xorbas).

Given a code C of length n:

S1 S2 Sn

c1 ∈ C
c2 ∈ C

cM ∈ C

9/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



Example: Reed-Solomon storage systems

Definition (Reed-Solomon code). Let x = (x1, . . . , xn) ∈ Fn
q , pairwise distinct.

RSq(k, n) := {(f (x1), . . . , f (xn)), f ∈ Fq[X], deg f < k}

C = RSq(k, n) is MDS:
I every codeword c ∈ C can be reconstructed from any k-subset of

coordinates of c,
I any subset of d⊥(C)− 1 = k coordinates of c are independent.

File storage:

a file Fi ∈ Σ ' Fk
qs is encoded into ci ∈ RSq(k, n)⊗Fqs

Main assumption (can be discussed):

s� M
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Presentation

Usual goal (assuming s� M): a large PIR rate

ρ :=
|Fi|
|r| .

Next, we present a PIR scheme for RS-coded databases.
I Originally [TR16], then extended and reformulated [TGKFH18, TGR18].
I Scalable.
I Optimal PIR rate for t = 1 and M→ ∞.
I PIR rate conjectured optimal for M→ ∞.

[TR16] PIR from MDS Coded Data in Distributed Storage Systems. Tajeddine, El
Rouayheb. ISIT. 2016.

[TGKFH18] Robust PIR from Coded Systems with Byzantine and Colluding Servers.
Tajeddine, Gnilke, Karpuk, Freij-Hollanti, Hollanti. ISIT. 2018.

[TGR18] PIR from MDS Coded Data in Distributed Storage Systems. Tajeddine, Gnilke, El
Rouayheb. IEEE-TIT. 2018.
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[TR16] PIR from MDS Coded Data in Distributed Storage Systems. Tajeddine, El
Rouayheb. ISIT. 2016.

[TGKFH18] Robust PIR from Coded Systems with Byzantine and Colluding Servers.
Tajeddine, Gnilke, Karpuk, Freij-Hollanti, Hollanti. ISIT. 2018.

[TGR18] PIR from MDS Coded Data in Distributed Storage Systems. Tajeddine, Gnilke, El
Rouayheb. IEEE-TIT. 2018.
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The protocol: query generation

Notation: a ? b := (a1b1, . . . , anbn)
C ? C ′ := 〈{c ? c′ | c ∈ C, c′ ∈ C ′}〉

System parameters:

C ⊆ Fn
q the storage code, C ∈ CM the coded database

D ⊆ Fn
q a query code of dual distance d⊥(D) = t + 1

J ⊆ [1, n] an information set for C ?D, and J := [1, n] \ J

S1 S2 Sn
c1

ci “goal”

cM

J

Queries:

1. the user generates at random M words
d1, . . . , dM ∈ D and defines Q as follows:

2. the j-th column of Q is sent to server Sj

Remark: queries remain private against collusions of
servers of size ≤ t.

S1 S2 Sn

d1

di + 1J

dM

J
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The protocol: server answers and reconstruction

Server answers: server Sj receives as a query a

column Q(j) ∈ FM
q of Q,

and has to compute

rj = 〈Q(j), C(j)〉 ∈ Fq.

server Sj

holds receives

c1[j]

cM[j]

q1[j]

qM[j]

c1[j]q1[j]

+

. . .

+

cM[j]qM[j]

= rj

Reconstruction:

The user collects

r = (r1, . . . , rn) =
M

∑
m=1

dm ? cm︸ ︷︷ ︸
∈C?D

+ 1J ? ci︸ ︷︷ ︸
=ci on J

and interpolates on J to recover

– ∑M
m=1 dm ? cm,

– then ci[|J].
r =

∑M
m=1 cm ? dm

r = +
0 ci[J]
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Analysis

Features for 1 run of the protocol.
I download cost: n symbols over Fqs

I upload cost: an (M× n)-matrix over Fq (negligible if s� M)

I retrieval of |J| = n− dim(C ?D) symbols of the desired file
I the protocol is private against collusions of size ≤ d⊥(D)− 1

For Reed-Solomon codes: C = RSq(k, n) and D = RSq(t, n):

d⊥(D)− 1 = t and C ?D = RSq(k + t− 1, n)⇒ |J| = n− k− t + 1

If (n− k− t + 1) | k, then repeating several runs gives a (download) PIR rate:

ρ =
n− k− t + 1

n
= 1− k + t− 1

n
.

Otherwise, striping methods allow to achieve the same PIR rate.
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A PIR scheme with transversal designs
Instances
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Regenerating codes

!!! Sorry for the notation !!!

Definition: C is an (n, k, d, α, β, B)-regenerating code if:
I C is a linear space of dimension B, consisting in (α× n)-matrices over Fq,
I every c ∈ C is fully determined by any k-subset of columns,
I every column of c can be “repaired”, by downloading β ≤ α symbols

from any d-subset of columns (hence dβ ≥ α).

Main bound (cut-set bound [WDR07]):

B ≤
k−1

∑
i=0

min(α, (d− i)β) .

A particular optimal point (minimum-bandwidth repair, MBR): dβ = α.
Then,

B =

(
kd− k(k− 1)

2

)
β .
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Product-matrix MBR codes [RSK11]

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via
a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. 2011.

We set β = 1, hence α = d.

1. Message symbols are arranged in a
(d× d)-matrix

A =

(
S T>

T 0

)
where S is (k× k)-symmetric.

2. Let G be a (d× n) generator matrix for
RSq(d, n), echelonized in degree (i.e. a
Vandermonde matrix). Codewords are then:

C = AG ∈ Fd×n
q .

Remark: row Cj of C is a word of a RS code

– of dimension k, if j > k,

– of dimension d > k otherwise.

0

d

k

0

ev(1)
ev(x)

ev(xd−1)

C1
C2

Cd

n
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PIR scheme on PM-MBR codes with no collusion

Private Information Retrieval Schemes with Regenerating Codes. L., Tajeddine,
Freij-Hollanti, Hollanti. arxiv:1811.02898. 2018.

PIR scheme with no collusion (t = 1).

• For row j = d down to k + 1:
– Run a RS(k)-coded PIR scheme with

randomness D.

– Interpolate random values ∑ dm ? Cj,m.

– Recover row Cj, then row Aj.

• For row j = k down to 1:
– Run a RS(j)-coded PIR scheme with

randomness D.

– Use symmetry of A and previously recovered
data for the reconstruction (high-degree terms
can be eliminated).

– Interpolate random values ∑ dm ? Cj,m.

– Recover row Cj, then row Aj.

0

ev(xk−1)

ev(xd−1)

ev(1)
ev(x)

ev(xk−2)

C1
C2

Cd

Retrieval rate: 1− k
nRetrieval rate: 1− k−1
nRetrieval rate: 1− j
n
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PIR scheme on PM-MBR codes

We get a PIR rate:

ρ =
1− k

n

1− k(k+1)(k−1)
nB

> 1− k
n
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Context

Previous schemes:
I low communication complexity
I computationally inefficient (linear in |F| = ∑M

m=1 |Fm|)

Our goal:
I optimal computation (|rj| for each server Sj)
I remove the assumption s� M
I moderate communication complexity
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Transversal designs

A transversal design TD(n, s) = (X,B,G) is given by:
I X a set of points, |X| = N = ns,

I groups G = {Gj}1≤j≤n satisfying

X =
n

ä
j=1

Gj and |Gj| = s ,

I blocks B ∈ B satisfying
– B ⊂ X and |B| = n;
– for all {i, j} ⊂ X, {i, j} lie:

either in a single group G ∈ G,
or in a unique block B ∈ B

. . .

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

G1 G2 Gn−1Gn
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Codes from designs

Let T be a transversal design TD(n, s) = (X,B,G).

Its incidence matrix M has size |B| × |X| and is defined by:

Mi,j =

{
1 if xj ∈ Bi
0 otherwise.

The code C based on T over Fq is the Fq-linear code admitting M as a
parity-check matrix (C⊥ is generated by M).

I length(C) = |X|,
I dim(C) = dim(ker M),
I every B ∈ B gives an h ∈ C⊥ such that wt(h|Gj

) = 1, ∀j = 1, . . . , n.
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Example

The transversal design TD(3, 3) represented by:

•

•

•

•

•

•

•

•

•
G1 G2 G3 B =

•

•

•

•

•

•

•

•

•
B1 ∪

•

•

•

•

•

•

•

•

•
B2 ∪

•

•

•

•

•

•

•

•

•
B3

gives an incidence matrix

M =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0


Its rank over F3 is 6 =⇒ the associated code C is a [9, 3]3 code.

22/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



Outline

1. Private information retrieval

2. PIR schemes for common storage systems
Distributed storage systems
A PIR scheme on RS-coded databases
A PIR scheme with regenerating codes

3. PIR schemes with low computation
Transversal designs and codes
A PIR scheme with transversal designs
Instances

4. Conclusion

22/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



The PIR scheme

Let C ⊆ FN
q be a code based on a TD(n, s).

• Initialisation. User U encodes F 7→ c ∈ C, and gives c|Gj
to server Sj.

• To recover Fi = ci, with i ∈ X:

1. User U randomly picks a block B ∈ B containing i.
Then U defines:

qj = Q(i)j :=
{

unique ∈ B∩Gj if i /∈ Gj
a random point in Gj otherwise.

2. Each server Sj sends back cqj

3. U recovers

ci = − ∑
j: i/∈Gj

cqj = − ∑
b∈B\{i}

cb

23/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



The PIR scheme

Let C ⊆ FN
q be a code based on a TD(n, s).

• Initialisation. User U encodes F 7→ c ∈ C, and gives c|Gj
to server Sj.

• To recover Fi = ci, with i ∈ X:

1. User U randomly picks a block B ∈ B containing i.
Then U defines:

qj = Q(i)j :=
{

unique ∈ B∩Gj if i /∈ Gj
a random point in Gj otherwise.

2. Each server Sj sends back cqj

3. U recovers

ci = − ∑
j: i/∈Gj

cqj = − ∑
b∈B\{i}

cb

23/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



The PIR scheme

Let C ⊆ FN
q be a code based on a TD(n, s).

• Initialisation. User U encodes F 7→ c ∈ C, and gives c|Gj
to server Sj.

• To recover Fi = ci, with i ∈ X:

1. User U randomly picks a block B ∈ B containing i.
Then U defines:

qj = Q(i)j :=
{

unique ∈ B∩Gj if i /∈ Gj
a random point in Gj otherwise.

2. Each server Sj sends back cqj

3. U recovers

ci = − ∑
j: i/∈Gj

cqj = − ∑
b∈B\{i}

cb

23/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



Privacy and parameters

Theorem. This PIR protocol is information-theoretically private.

Proof:
– the only server which holds Fi received a random query;

– for each other server Sj, query qj gives no information on the block B which has been
picked⇒ no information leaks on i.

Features.
I communication complexity: n log s uploaded bits, n log q downloaded bits
I computational complexity:

I only 1 read for each server (somewhat optimal)
I ≤ n additions over Fq for the user

I storage overhead: (ns−M) log q bits, where M = dim(C)

Question: transversal designs with good dim(C) depending on (n, s)?
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Instances with geometric designs

TA, the classical affine transversal design:
I X = Fm

q , m ≥ 2,
I G a set of q disjoint hyperplanes partitionning X,
I B = {affine lines L secant to each group of G}.

The code has:

– length ns = qm,

– “locality” n = q.

rate M/N

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7
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	0.9

	1

210 215 220 225 230 235 240 245

m=2

m=3

m=4

m=5

length N = ns = 2em

Question: better instances?
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Instances with orthogonal arrays

An orthogonal array OA(t, n, s) of strength t is a list A of words

– of length n,

– over a finite set S, |S| = s,

– such that, for every I ⊂ [1, n] of size t, A|I = St.

Equivalently, an OA(t, n, s) is a code A ⊂ Sn with dual distance t + 1.

Construction OA→ TD :
I X = S× [1, n]
I G = {S× {i}, 1 ≤ i ≤ n}

I B = {{(ci, i), 1 ≤ i ≤ n}, c ∈ OA}

S = {a, b}

OA(2, 3, 2) =


a b b
b b a
b a b
a a a



(a, 1) (a, 2) (a, 3)

(b, 1) (b, 2) (b, 3)
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– of length n,

– over a finite set S, |S| = s,

– such that, for every I ⊂ [1, n] of size t, A|I = St.

Equivalently, an OA(t, n, s) is a code A ⊂ Sn with dual distance t + 1.

Construction OA→ TD :
I X = S× [1, n]
I G = {S× {i}, 1 ≤ i ≤ n}
I B = {{(ci, i), 1 ≤ i ≤ n}, c ∈ OA}

S = {a, b}

OA(2, 3, 2) =


a b b
b b a
b a b
a a a


(a, 1) (a, 2) (a, 3)

(b, 1) (b, 2) (b, 3)
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Resisting collusions

Proposition. For t = 2, an OA(t, n, s) gives a TD(n, s).

Experimentally, for t = 2 and small n and s, codes based on classical affine TDs
have the largest dimension.

For t ≥ 3, we get TDs such that:

for every t-set T of points lying in t different groups,
there exists a unique block B ∈ B such that T ⊂ B.

⇒ The PIR protocol resists t− 1 colluding servers.

I OAs with t > 2 exist (e.g. from Reed-Solomon codes)
I But associated TDs lead to codes with poor rates (except for t� n)

Private Information Retrieval from Transversal Designs. L.. IEEE-TIT. 2019.
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Outline

1. Private information retrieval

2. PIR schemes for common storage systems
Distributed storage systems
A PIR scheme on RS-coded databases
A PIR scheme with regenerating codes

3. PIR schemes with low computation
Transversal designs and codes
A PIR scheme with transversal designs
Instances

4. Conclusion

27/28 J. Lavauzelle Séminaire CASYS– On the construction of PIR schemes –



Conclusion

Private information retrieval:
I concentrated a lot of recent research,
I involves nice mathematical tools,
I but in practice ... relies on questionable assumptions (collusions,

size of entries, communication channels)

Questions?
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