Private Information Retrieval Protocols Based on Transversal Designs

Julien Lavauzelle

LIX & INRIA Saclay, Université Paris-Saclay

Séminaire de cryptologie, Rennes, France 02/02/2018

- 1. The PIR issue
- 2. Transversal designs for efficient PIR protocols
- 3. Instances

1. The PIR issue

2. Transversal designs for efficient PIR protocols

3. Instances

First instance: affine transversal designs Second instance: with orthogonal arrays

Given a file F, can we retrieve the entry F_i without leaking any information on i?

Séminaire Crypto Rennes

Given a file F, can we retrieve the entry F_i without leaking any information on i?

Remark:

- PIR \neq anonymity (hidden user)
- ▶ PIR \neq encryption (hidden data)

A file F stored on ℓ servers S_1,\ldots,S_ℓ . File F may be encoded.

Private Information Retrieval (PIR) protocol:

user U wants to recover F_i privately.

A file F stored on ℓ servers S_1,\ldots,S_ℓ . File F may be encoded.

Private Information Retrieval (PIR) protocol:

user U wants to recover F_i privately.

1. U generates a query vector $\mathbf{q} = (q_1, \dots, q_\ell) \leftarrow \mathcal{Q}(i)$ and sends q_j to S_j

A file F stored on ℓ servers S_1, \ldots, S_ℓ . File F may be encoded.

Private Information Retrieval (PIR) protocol:

user U wants to recover F_i privately.

- 1. U generates a query vector $\mathbf{q} = (q_1, \dots, q_\ell) \leftarrow \mathcal{Q}(i)$ and sends q_j to S_j
- 2. Each server S_j computes $a_j = A_j(q_j, F_{|S_j})$ and sends it back to U

A file F stored on ℓ servers S_1, \ldots, S_ℓ . File F may be encoded.

Private Information Retrieval (PIR) protocol:

user U wants to recover F_i privately.

- 1. U generates a query vector $\mathbf{q} = (q_1, \dots, q_\ell) \leftarrow \mathcal{Q}(i)$ and sends q_j to S_j
- 2. Each server S_j computes $a_j = A_j(q_j, F_{|S_j})$ and sends it back to U
- 3. *U* recovers $F_i = \mathcal{R}(\mathbf{q}, \mathbf{a}, i)$

A file F stored on ℓ servers S_1, \ldots, S_ℓ . File F may be encoded.

Private Information Retrieval (PIR) protocol:

user U wants to recover F_i privately.

- 1. U generates a query vector $\mathbf{q} = (q_1, \dots, q_\ell) \leftarrow \mathcal{Q}(i)$ and sends q_j to S_j
- 2. Each server S_j computes $a_j = A_j(q_j, F_{|S_j})$ and sends it back to U
- 3. *U* recovers $F_i = \mathcal{R}(\mathbf{q}, \mathbf{a}, i)$

Information-theoretic privacy: $I(i; q_i) = 0, \forall j = 1, ..., \ell$.

Common goals for PIR:

- Low communication complexity (number of bits exchanged between user and servers).
 - \rightarrow number of servers \geq 2.
- Low storage overhead for the servers (if coded file).
- Low computation complexity for algorithms \mathcal{A} (server) and \mathcal{R} (user).

- |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- ▶ Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

Ref: Chor, Goldreich, Kushilevitz, Sudan, Private Information Retrieval, FOCS'95, J.ACM'98

- ▶ |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- ▶ 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

1. U generates at random two subsets X_1, X_2 of [1, m]. Then U sends:

Ref: Chor, Goldreich, Kushilevitz, Sudan, Private Information Retrieval, FOCS'95, J.ACM'98

- |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- ▶ Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

1. U generates at random two subsets X_1, X_2 of [1, m]. Then U sends: - (X_1 , X_2) to S_{00} ,

Ref: Chor, Goldreich, Kushilevitz, Sudan, Private Information Retrieval, FOCS'95, J.ACM'98

- |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- ▶ 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

1. U generates at random two subsets X_1, X_2 of [1, m]. Then U sends: - (X_1 , X_2) to S_{00} , - ($X_1 \Delta \{i_1\}, X_2$) to S_{10} ,

Ref: Chor, Goldreich, Kushilevitz, Sudan, Private Information Retrieval, FOCS'95, J.ACM'98

- |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- ▶ 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- ▶ Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

1. U generates at random two subsets X_1, X_2 of [1, m]. Then U sends: - (X_1 , X_2) to S_{00} , - ($X_1 \Delta \{i_1\}, X_2$) to S_{10} , - ($X_1 \ , X_2 \Delta \{i_2\}$) to S_{01} ,

- |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- ▶ Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

- |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- ▶ Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

- 1. U generates at random two subsets X_1, X_2 of [1, m]. Then U sends:
 - $\begin{array}{l} (X_1, X_2) \text{ to } S_{00}, \\ (X_1 \Delta \{i_1\}, X_2) \text{ to } S_{10}, \\ (X_1, X_2 \Delta \{i_2\}) \text{ to } S_{01}, \\ (X_1 \Delta \{i_1\}, X_2 \Delta \{i_2\}) \text{ to } S_{11}. \end{array}$
- 2. At reception of (Z_1, Z_2) , each server computes $a = \bigoplus_{z \in Z_1 \times Z_2} F_z$ and sends *a* to the user.

- ▶ |F| = n bits, with $n = m^2$, and let's see [1, n] as $[1, m]^2$.
- 4 servers S_{00} , S_{01} , S_{10} , S_{11} . Each server holds F.
- ▶ Assume user U wants to retrieve $F_{(i_1,i_2)}$, $1 \le i_1, i_2 \le m$.

- 1. U generates at random two subsets X_1, X_2 of [1, m]. Then U sends:
- 2. At reception of (Z_1, Z_2) , each server computes $a = \bigoplus_{z \in Z_1 \times Z_2} F_z$ and sends *a* to the user.
- 3. User XORs the 4 received bits and outputs the result.

Parameters of [CGKS'95-98]

Secure and correct.

Parameters of [CGKS'95-98]

Secure and correct.

With 4 servers:

- Communication: $8\sqrt{n}$ uploaded bits, 4 dowloaded bits,
- ▶ Storage: replication of *F* over 4 servers,
- Complexity: in average, XOR of n/4 bits for each server's answer; XOR of 4 bits for the user.

Parameters of [CGKS'95-98]

Secure and correct.

With 4 servers:

- Communication: $8\sqrt{n}$ uploaded bits, 4 dowloaded bits,
- ▶ Storage: replication of *F* over 4 servers,
- Complexity: in average, XOR of n/4 bits for each server's answer; XOR of 4 bits for the user.

Generalizable to 2^s servers:

- Communication: $s2^{s}n^{1/s}$ uploaded bits, 2^{s} dowloaded bits,
- ▶ Storage: replication of *F* over 2^s servers,
- Complexity: in average, XOR of n/2^s bits for each server's answer; XOR of 2^s bits for the user.

Other notable works

Main ideas:

- Katz, Trevisan '00.
 Smooth locally decodable codes give PIR protocols.
- Fazeli, Vardy, Yaakobi '15.
 PIR codes. Transforms a replication-based PIR into a coded PIR.
- Sun, Jafar '16.
 PIR capacity.
- El Rouayheb, Freij-Hollanti, Gnilke, Hollanti, Karpuk, Tajeddine '16'17.

Optimal constructions according to PIR capacity. Star product construction.

Context: file F is frequently queried (*e.g.* a public database.) Notion of *price of privacy*, mainly depending on:

- computational complexity for the servers,
- servers' storage overhead.

Yekhanin (in a survey, '12): "the overwhelming computational complexity of PIR schemes (...) currently presents the main bottleneck to their practical deployment".

Overview of our solution

Basic ideas:

- Encode the file F → c ∈ C, split c in ℓ parts and share them among the ℓ servers.
- Use **low-weight** parity-check equations of C to retrieve symbols F_i .

Overview of our solution

Basic ideas:

- Encode the file F → c ∈ C, split c in ℓ parts and share them among the ℓ servers.
- ▶ Use **low-weight** parity-check equations of C to retrieve symbols F_i.

Requirements (informal):

- privacy: we need many parity-check equations, with uniformly distributed supports,
- algorithmic complexity: for each of these parity-check equations, each server must hold a few non-zero symbols.

Overview of our solution

Basic ideas:

- Encode the file F → c ∈ C, split c in ℓ parts and share them among the ℓ servers.
- ▶ Use **low-weight** parity-check equations of C to retrieve symbols F_i.

Requirements (informal):

- privacy: we need many parity-check equations, with uniformly distributed supports,
- algorithmic complexity: for each of these parity-check equations, each server must hold a few non-zero symbols.

Practical solution:

• use codes C based on transversal designs.

1. The PIR issue

2. Transversal designs for efficient PIR protocols

3. Instances

First instance: affine transversal designs Second instance: with orthogonal arrays

A transversal design $TD(\ell, s) = (X, \mathcal{B}, \mathcal{G})$ is given by:

• X a set of *points*, $|X| = n = s\ell$,

Transversal designs

A transversal design $TD(\ell, s) = (X, \mathcal{B}, \mathcal{G})$ is given by:

► X a set of points,
$$|X| = n = s\ell$$
,
► groups $\mathcal{G} = \{G_j\}_{1 \le j \le \ell}$, satisfying
 $X = \prod_{j=1}^{\ell} G_j$ and $|G_j| = s$,

Transversal designs

A transversal design $TD(\ell, s) = (X, \mathcal{B}, \mathcal{G})$ is given by:

▶ X a set of points,
$$|X| = n = s\ell$$
,
▶ groups $\mathcal{G} = \{G_j\}_{1 \le j \le \ell}$, satisfying
 $X = \prod_{j=1}^{\ell} G_j$ and $|G_j| = s$,

• blocks $B \in \mathcal{B}$ satisfying

-
$$B \subset X$$
 and $|B| = \ell$;
- for all $\{i, j\} \subset X$, $\{i, j\}$ lie:
either in the same group $G \in \mathcal{G}$,
or in a unique block $B \in \mathcal{B}$

▶ Points X, parallel hyperplanes G and transversal lines B in the affine space A^m. For instance, a TD(3,3):

- Similar construction in $X = \mathbb{P}^m \setminus A$, $\operatorname{codim}(A) = 2$.
- Combinatorial constructions based on orthogonal arrays, on difference sets...

Codes from designs

Let \mathcal{T} be a transversal design $\mathrm{TD}(\ell, s) = (X, \mathcal{B}, \mathcal{G})$. Its **incidence matrix** M has size $|\mathcal{B}| \times |X|$ and is defined by:

$$M_{i,j} = \left\{egin{array}{cc} 1 & ext{if } x_j \in B_i \ 0 & ext{otherwise.} \end{array}
ight.$$

Let \mathcal{T} be a transversal design $\mathrm{TD}(\ell, s) = (X, \mathcal{B}, \mathcal{G})$.

Its incidence matrix *M* has size $|\mathcal{B}| \times |X|$ and is defined by:

$$M_{i,j} = \left\{egin{array}{cc} 1 & ext{if } x_j \in B_i \ 0 & ext{otherwise.} \end{array}
ight.$$

The code C based on T over \mathbb{F}_q is the \mathbb{F}_q -linear code having M as parity-check matrix (C^{\perp} is generated by H).

- ▶ length(C) = |X|,
- $\dim(\mathcal{C}) = \dim(\ker M)$,
- ▶ $B \in \mathcal{B} \Rightarrow h \in \mathcal{C}^{\perp}$, such that $\operatorname{wt}(h_{|G_j}) = 1, \forall j = 1, \dots, \ell$.

Example

The transversal design TD(3,3) represented by:

gives an incidence matrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

whose rank over \mathbb{F}_3 is 6. $\implies \mathcal{C}$ is a [9,3]₃ code.

Our PIR protocol construction

Let $\mathcal{C} \subseteq \mathbb{F}_q^n$ be a code based on a $\mathrm{TD}(\ell, s)$.
Our PIR protocol construction

Let $\mathcal{C} \subseteq \mathbb{F}_q^n$ be a code based on a $\mathrm{TD}(\ell, s)$.

• Initialisation. User U encodes $F \mapsto c \in C$, and gives $c_{|G_j|}$ to server S_j for $j = 1, \ldots, \ell$.

- To recover $F_i = c_i$:
 - 1. User U randomly picks a block $B \in \mathcal{B}$ containing i. Then U defines:

$$q_j = \mathcal{Q}(i)_j := \left\{ egin{array}{ll} ext{unique} &\in B \cap G_j & ext{if } i \notin G_j \ ext{a random point in } G_j & ext{otherwise} \end{array}
ight.$$

2. each server S_j sends back $a_j = A_j(q_j, c_{|G_j}) := c_{q_j}$

3. U recovers

$$-\sum_{j:\,i\notin G_j}c_{q_j}=-\sum_{b\in B\setminus\{i\}}c_{q_j}=c_i$$

- the only server which holds F_i received a random query;
- for each other server S_j , q_j gives no information on the block B which has been picked \Rightarrow no information leaks on *i*.

- the only server which holds F_i received a random query;
- for each other server S_i , q_j gives no information on the block B which has been picked \Rightarrow no information leaks on i.

Properties. For $|F| = k \log q$ bits, with $k = \dim C \le n = s\ell$.

- the only server which holds F_i received a random query;
- for each other server S_i , q_j gives no information on the block B which has been picked \Rightarrow no information leaks on i.

Properties. For $|F| = k \log q$ bits, with $k = \dim C \le n = s\ell$.

• communication complexity: $\ell(\log s + \log q)$ bits

- the only server which holds F_i received a random query;
- for each other server S_i , q_j gives no information on the block B which has been picked \Rightarrow no information leaks on i.

Properties. For $|F| = k \log q$ bits, with $k = \dim C \le n = s\ell$.

- communication complexity: $\ell(\log s + \log q)$ bits
- computational complexity:
 - $\mathcal{O}(1)$ for algorithm \mathcal{A} (somewhat optimal)
 - $\mathcal{O}(\ell) \mathbb{F}_q$ -operations for \mathcal{R}

- the only server which holds F_i received a random query;
- for each other server S_i , q_j gives no information on the block B which has been picked \Rightarrow no information leaks on i.

Properties. For $|F| = k \log q$ bits, with $k = \dim C \le n = s\ell$.

- communication complexity: $\ell(\log s + \log q)$ bits
- computational complexity:
 - $\mathcal{O}(1)$ for algorithm \mathcal{A} (somewhat optimal)
 - $\mathcal{O}(\ell) \mathbb{F}_q$ -operations for \mathcal{R}

• storage overhead: $(n - k) \log q$ bits

- the only server which holds F_i received a random query;
- for each other server S_j , q_j gives no information on the block B which has been picked \Rightarrow no information leaks on *i*.

Properties. For $|F| = k \log q$ bits, with $k = \dim C \le n = s\ell$.

- communication complexity: $\ell(\log s + \log q)$ bits
- computational complexity:
 - $\mathcal{O}(1)$ for algorithm \mathcal{A} (somewhat optimal)
 - $\mathcal{O}(\ell) \mathbb{F}_q$ -operations for \mathcal{R}
- storage overhead: $(n k) \log q$ bits

Question: TDs with good *k* depending on (ℓ, s) ?

1. The PIR issue

2. Transversal designs for efficient PIR protocols

3. Instances

First instance: affine transversal designs Second instance: with orthogonal arrays

1. The PIR issue

2. Transversal designs for efficient PIR protocols

3. Instances

First instance: affine transversal designs Second instance: with orthogonal arrays

A classical TD: points/lines/hyperplanes

Let \mathcal{T}_A be the **classical affine TD**:

- $X = \mathbb{F}_q^m$, $m \ge 2$,
- \mathcal{G} a set of q disjoint hyperplanes partitionning X,
- $\mathcal{B} = \{ \text{affine lines } L \text{ secant to each group of } \mathcal{G} \}.$

A classical TD: points/lines/hyperplanes

Let \mathcal{T}_A be the classical affine TD:

- $X = \mathbb{F}_q^m$, $m \ge 2$,
- \mathcal{G} a set of q disjoint hyperplanes partitionning X,
- $\mathcal{B} = \{ \text{affine lines } L \text{ secant to each group of } \mathcal{G} \}.$

The associated \mathbb{F}_q -linear code \mathcal{C} has

- ▶ length $n = q^m$
- ▶ block size ℓ = q
- dimension?

A classical TD: points/lines/hyperplanes

Let \mathcal{T}_A be the classical affine TD:

- $X = \mathbb{F}_q^m$, $m \ge 2$,
- \mathcal{G} a set of q disjoint hyperplanes partitionning X,
- $\mathcal{B} = \{ \text{affine lines } L \text{ secant to each group of } \mathcal{G} \}.$

The associated \mathbb{F}_q -linear code \mathcal{C} has

- ▶ length $n = q^m$
- ▶ block size ℓ = q
- dimension?
 - its parity-check matrix has q^m columns and q^{2m-2} rows...
 - ... but ${\mathcal C}$ contains ${
 m RM}_q(m,q-2)$ which has rate $\simeq 1/m!,$
 - and sometimes it is even larger.

Lower bounds on rates of TD-based codes

Séminaire Crypto Rennes

Particular case: m = 2

For m = 2, $q = p^e$, using Hamada's formula [Ham68] we obtain:

$$n=p^{2e}, \quad k\geq p^{2e}-\binom{p+1}{2}^e, \quad \ell=\sqrt{n}.$$

[Ham68] N Hamada. The rank of the incidence matrix of points and d-flats in finite geometries. J. of Science of the Hiroshima Univ., Series A-I (Maths), 32(2):381–396, 1968.

J. Lavauzelle

Particular case: m = 2

For m = 2, $q = p^e$, using Hamada's formula [Ham68] we obtain:

$$n=p^{2e}, \quad k\geq p^{2e}-\binom{p+1}{2}^e, \quad \ell=\sqrt{n}.$$

Asymptotically $(e \rightarrow \infty, \text{ fixed } p)$:

$$\begin{cases} R = k/n = 1 - \Theta(n^{c_p}) \\ \ell = \Theta(\sqrt{n}) \end{cases}$$

where $c_p = \frac{1}{2}(\log_p(\frac{p+1}{2}) - 1) < 0.$

Moreover, $c_p \nearrow$, with $c_2 = -0.208$ and $c_{\infty} = 0$.

[Ham68] N Hamada. The rank of the incidence matrix of points and d-flats in finite geometries. J. of Science of the Hiroshima Univ., Series A-I (Maths), 32(2):381–396, 1968.

Particular case: m = 2

For m = 2, $q = p^e$, using Hamada's formula [Ham68] we obtain:

$$n=p^{2e}, \quad k\geq p^{2e}-\binom{p+1}{2}^e, \quad \ell=\sqrt{n}.$$

Asymptotically $(e \rightarrow \infty, \text{ fixed } p)$:

$$\begin{cases} R = k/n = 1 - \Theta(n^{c_p}) \\ \ell = \Theta(\sqrt{n}) \end{cases}$$

where $c_p = \frac{1}{2}(\log_p(\frac{p+1}{2}) - 1) < 0.$

Moreover, $c_p \nearrow$, with $c_2 = -0.208$ and $c_{\infty} = 0$.

Open question:

is this instance rate-optimal?

[Ham68] N Hamada. The rank of the incidence matrix of points and d-flats in finite geometries. J. of Science of the Hiroshima Univ., Series A-I (Maths), 32(2):381–396, 1968.

1. The PIR issue

2. Transversal designs for efficient PIR protocols

3. Instances First instance: affine transversal designs Second instance: with orthogonal arrays An orthogonal array $OA(t, \ell, s)$ of strength t may be seen as a list of codewords over S, with:

- -|S| = s,
- length ℓ ,
- and dual distance $d^{\perp} = t+1$

An orthogonal array $OA(t, \ell, s)$ of strength t may be seen as a list of codewords over S, with:

$$|S| = s, \qquad S = \{a, b\}$$

$$= |ength \ell, \qquad [a \ b \ b]$$

– and dual distance $d^{\perp}=t+1$

 $OA(2,3,2) = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$

An orthogonal array $OA(t, \ell, s)$ of strength t may be seen as a list of codewords over S, with:

- S = s,	$S = \{a, b\}$		
- length ℓ , - and dual distance $d^\perp = t+1$	<i>OA</i> (2, 3, 2	$f(x) = \begin{bmatrix} a \\ b \\ b \\ a \end{bmatrix}$	b b b a a b a a
Construction $OA o TD$:			
$X = S \times [1, \ell]$ $G = \{S \times \{i\}, 1 \le i \le \ell\}$	(a, 1)	(a, 2)	(a,3)
	(<i>b</i> , 1)	(<i>b</i> , 2)	(b,3)

An orthogonal array $OA(t, \ell, s)$ of strength t may be seen as a list of codewords over S, with:

- $-|S| = s, \qquad S = \{a, b\}$ $\text{ length } \ell,$ $\text{ and dual distance } d^{\perp} = t + 1 \qquad OA(2, 3, 2) = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$ Construction OA \rightarrow TD : $X = S \times [1, \ell] \qquad (a, 1) \qquad (a, 2) \qquad (a, 3)$
 - $\blacktriangleright \mathcal{G} = \{ S \times \{i\}, 1 \le i \le \ell \}$
 - $\blacktriangleright \ \mathcal{B} = \{\{(c_i, i), 1 \le i \le \ell\}, c \in \mathrm{OA}\}$

An orthogonal array $OA(t, \ell, s)$ of strength t may be seen as a list of codewords over S, with:

- and dual distance $d^{\perp} = t + 1$

$$OA(2,3,2) = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$$

Construction OA \rightarrow TD :

- $\blacktriangleright X = S \times [1, \ell]$
- $\blacktriangleright \mathcal{G} = \{S \times \{i\}, 1 \le i \le \ell\}$
- $\blacktriangleright \ \mathcal{B} = \{\{(c_i, i), 1 \le i \le \ell\}, c \in \mathrm{OA}\}\$

An orthogonal array $OA(t, \ell, s)$ of strength t may be seen as a list of codewords over S, with:

 $\begin{aligned} - & |S| = s, \\ - & \text{ length } \ell, \\ - & \text{ and dual distance } d^{\perp} = t + 1 \end{aligned} \qquad OA(2,3,2) = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \end{bmatrix}$

Construction OA \rightarrow TD :

- $\blacktriangleright X = S \times [1, \ell]$
- $\blacktriangleright \mathcal{G} = \{ S \times \{i\}, 1 \le i \le \ell \}$
- $\blacktriangleright \ \mathcal{B} = \{\{(c_i, i), 1 \le i \le \ell\}, c \in \mathrm{OA}\}\$

Prop. If t = 2, then we obtain a $TD(\ell, s)$ from an $OA(t, \ell, s)$.

Experiments: for t = 2 and small ℓ and s, the classical affine TD leads to the best code dimension.

Experiments: for t = 2 and small ℓ and s, the classical affine TD leads to the best code dimension.

What about $OA(t, \ell, s)$ with t > 2?

Resulting TD satisfies: for each t-tuple of points lying in t different groups, there is a block which contains them all.

 \Rightarrow Our PIR protocol resists t - 1 collusive servers.

Definition.– We call *incidence code* of C_0 , denoted $I_q(C_0)$, the \mathbb{F}_q -linear code C coming from the successive constructions:

 $\mathcal{C}_0 = \mathrm{OA}(t, \ell, s) \quad \mapsto \quad \text{generalized } \mathrm{TD}(\ell, s; t) \quad \mapsto \quad \mathcal{C} = I_q(\mathcal{C}_0)$

Definition.– We call *incidence code* of C_0 , denoted $I_q(C_0)$, the \mathbb{F}_q -linear code C coming from the successive constructions:

 $\mathcal{C}_0 = \mathrm{OA}(t, \ell, s) \quad \mapsto \quad \text{generalized } \mathrm{TD}(\ell, s; t) \quad \mapsto \quad \mathcal{C} = I_q(\mathcal{C}_0)$

We derive PIR parameters from those of C_0 :

- ▶ $d^{\perp}(\mathcal{C}_0) 2$ is the number of collusive servers the protocol resists
- I_q(·) is decreasing w.r.t. inclusion of codes ⇒ the larger C₀, the larger PIR storage overhead

Definition.– We call *incidence code* of C_0 , denoted $I_q(C_0)$, the \mathbb{F}_q -linear code C coming from the successive constructions:

 $\mathcal{C}_0 = \mathrm{OA}(t, \ell, s) \quad \mapsto \quad \text{generalized } \mathrm{TD}(\ell, s; t) \quad \mapsto \quad \mathcal{C} = I_q(\mathcal{C}_0)$

We derive PIR parameters from those of C_0 :

- ▶ $d^{\perp}(\mathcal{C}_0) 2$ is the number of collusive servers the protocol resists
- *I_q*(·) is decreasing w.r.t. inclusion of codes
 ⇒ the larger C₀, the larger PIR storage overhead

let's use MDS codes for \mathcal{C}_0

Incidence codes of Reed-Solomon codes

Example: for $C_0 = \operatorname{RS}(\mathbb{F}_q, t+1)$,

- $|F| = Rq^2 \log q$ bits, with R the rate of the incidence code
- requires q servers, resists t colluding ones,
- communication complexity $\Theta(q \log q)$,
- optimal computation complexity; rate R given by:

Incidence codes of Reed-Solomon codes

Example: for $C_0 = \operatorname{RS}(\mathbb{F}_q, t+1)$,

- $|F| = Rq^2 \log q$ bits, with R the rate of the incidence code
- requires q servers, resists t colluding ones,
- communication complexity $\Theta(q \log q)$,
- optimal computation complexity; rate R given by:

Conclusion

Summary: (server-)efficient PIR protocols can be built with codes based on transversal designs

Summary: (server-)efficient PIR protocols can be built with codes based on transversal designs

Current issues:

- find transversal designs leading to largest codes,
- bounds, optimal constructions,
- (divisible projective linear codes C_0 over large alphabets?).

Summary: (server-)efficient PIR protocols can be built with codes based on transversal designs

Current issues:

- find transversal designs leading to largest codes,
- bounds, optimal constructions,
- (divisible projective linear codes C_0 over large alphabets?).

PIR = very dynamic field:

- PIR capacity and optimal constructions,
- PIR on coded databases,
- partial PIR.

Thank you for your attention. Questions?

Proposition.– For any code C_0 of length ℓ over \mathbb{F}_s , the incidence code $I_q(C_0)$ is an $[n, k]_q$ code with:

- ▶ $n = s\ell$,
- ► $l-1 \leq k \leq n \Omega(\sqrt{n}).$

Proposition. – Let *H* be the parity-check matrix of $I_q(\mathcal{C}_0)$. Then,

$$HH^{T} = \ell J - D(\mathcal{C}_{0}),$$

where J is the all-1 matrix and

$$D(\mathcal{C}_0)_{c,c'} = d(c,c'), \quad \forall c,c' \in \mathcal{C}_0.$$
A *p*-divisible code is a code whose codewords' weights are divisible by *p*. **Corollary.**– If C_0 is *p*-divisible for $p = char(\mathbb{F}_q)$, then:

$$k = \dim I_q(\mathcal{C}_0) \geq rac{n-1}{2}$$
 .

Furthermore, if $p \mid \ell$, then:

$$HH^T = 0 \quad \Rightarrow \quad \mathcal{C}^\perp \subseteq \mathcal{C}$$

Theorem.– If there exists a *p*-divisible code C_0 of length ℓ and dual distance t + 2, then there exists a PIR protocol resisting to t colluding servers, with rate $\gtrsim 1/2$.

Question. Do there exist projective $(d^{\perp} \ge 3)$ *p*-divisible codes of length ℓ over \mathbb{F}_q (with $q \gg \ell$, or d^{\perp} large)?