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Informal PIR

Given a file F ,

can we retrieve the entry Fi

without leaking any information on i?

Remark:
I PIR 6= anonymity (hidden user)
I PIR 6= encryption (hidden data)
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Formal definition of PIR

A file F stored on ` servers S1, . . . ,S` . File F may be encoded.

Private Information Retrieval (PIR) protocol:
user U wants to recover Fi privately.

1. U generates a query vector
q = (q1, . . . , q`)← Q(i)
and sends qj to Sj

2. Each server Sj computes
aj = Aj(qj ,F|Sj

) and sends
it back to U

3. U recovers Fi = R(q, a, i)

U . . .

S1 S2 S`

(q1, . . . , q`)

(a1, . . . , a`)

Information-theoretic privacy: I(i ; qj) = 0, ∀j = 1, . . . , `.
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Goals

Common goals for PIR:
I Low communication complexity (number of bits exchanged between

user and servers).
→ number of servers ≥ 2.

I Low storage overhead for the servers (if coded file).
I Low computation complexity for algorithms A (server) and R (user).
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Seminal work [CGKS’95-98]

Ref: Chor, Goldreich, Kushilevitz, Sudan, Private Information Retrieval, FOCS’95, J.ACM’98

I |F | = n bits, with n = m2, and let’s see [1, n] as [1,m]2.
I 4 servers S00,S01,S10,S11. Each server holds F .
I Assume user U wants to retrieve F(i1,i2), 1 ≤ i1, i2 ≤ m.

i1

i2

X1

X2 XOR this data

XORed 4×XORed 2×

XORed 1×

1. U generates at random two subsets
X1,X2 of [1,m]. Then U sends:

– ( X1 , X2 ) to S00,
– (X1∆{i1}, X2 ) to S10,
– ( X1 ,X2∆{i2}) to S01,
– (X1∆{i1},X2∆{i2}) to S11.

2. At reception of (Z1,Z2), each server
computes a =

⊕
z∈Z1×Z2

Fz and sends
a to the user.

3. User XORs the 4 received bits and
outputs the result.
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Parameters of [CGKS’95-98]

Secure and correct.

With 4 servers:
I Communication: 8

√
n uploaded bits, 4 dowloaded bits,

I Storage: replication of F over 4 servers,
I Complexity: in average, XOR of n/4 bits for each server’s answer;

XOR of 4 bits for the user.

Generalizable to 2s servers:
I Communication: s2sn1/s uploaded bits, 2s dowloaded bits,
I Storage: replication of F over 2s servers,
I Complexity: in average, XOR of n/2s bits for each server’s answer;

XOR of 2s bits for the user.
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Other notable works

Main ideas:
I Katz, Trevisan ’00.

Smooth locally decodable codes give PIR protocols.
I Fazeli, Vardy, Yaakobi ’15.

PIR codes. Transforms a replication-based PIR into a coded PIR.
I Sun, Jafar ’16.

PIR capacity.
I El Rouayheb, Freij-Hollanti, Gnilke, Hollanti, Karpuk, Tajeddine

’16’17.
Optimal constructions according to PIR capacity. Star product
construction.
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Practicality

Context: file F is frequently queried (e.g. a public database.) Notion of
price of privacy, mainly depending on:

I computational complexity for the servers,
I servers’ storage overhead.

Yekhanin (in a survey, ’12): “the overwhelming computational complexity
of PIR schemes (...) currently presents the main bottleneck to their
practical deployment”.
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Overview of our solution

Basic ideas:
I Encode the file F 7→ c ∈ C, split c in ` parts and share them among

the ` servers.
I Use low-weight parity-check equations of C to retrieve symbols Fi .

Requirements (informal):
I privacy: we need many parity-check equations, with uniformly

distributed supports,
I algorithmic complexity: for each of these parity-check equations,

each server must hold a few non-zero symbols.

Practical solution:
I use codes C based on transversal designs.
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Transversal designs

A transversal design TD(`, s) = (X ,B,G) is given by:

I X a set of points, |X | = n = s`,

I groups G = {Gj}1≤j≤`, satisfying

X =
∐̀
j=1

Gj and |Gj | = s ,

I blocks B ∈ B satisfying
– B ⊂ X and |B| = `;
– for all {i , j} ⊂ X , {i , j} lie:

either in the same group G ∈ G,
or in a unique block B ∈ B

. . .

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

G1 G2 G`−1G`

j

i

•

•

•

•

10/26 J. Lavauzelle Séminaire Crypto Rennes



Transversal designs

A transversal design TD(`, s) = (X ,B,G) is given by:

I X a set of points, |X | = n = s`,
I groups G = {Gj}1≤j≤`, satisfying

X =
∐̀
j=1

Gj and |Gj | = s ,

I blocks B ∈ B satisfying
– B ⊂ X and |B| = `;
– for all {i , j} ⊂ X , {i , j} lie:

either in the same group G ∈ G,
or in a unique block B ∈ B

. . .

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

G1 G2 G`−1G`

j

i

•

•

•

•

10/26 J. Lavauzelle Séminaire Crypto Rennes



Transversal designs

A transversal design TD(`, s) = (X ,B,G) is given by:

I X a set of points, |X | = n = s`,
I groups G = {Gj}1≤j≤`, satisfying

X =
∐̀
j=1

Gj and |Gj | = s ,

I blocks B ∈ B satisfying
– B ⊂ X and |B| = `;
– for all {i , j} ⊂ X , {i , j} lie:

either in the same group G ∈ G,
or in a unique block B ∈ B

. . .

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

G1 G2 G`−1G`

j

i

•

•

•

•

10/26 J. Lavauzelle Séminaire Crypto Rennes



Examples of TD

I Points X , parallel hyperplanes G and transversal lines B in the affine
space Am. For instance, a TD(3, 3):

•
•
•

•
•
•

•
•
•

G1 G2 G3 B =

•
•
•

•
•
•

•
•
•

B1 ∪

•
•
•

•
•
•

•
•
•

B2 ∪

•
•
•

•
•
•

•
•
•

B3

I Similar construction in X = Pm \ A, codim(A) = 2.
I Combinatorial constructions based on orthogonal arrays, on

difference sets...
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Codes from designs

Let T be a transversal design TD(`, s) = (X ,B,G).
Its incidence matrix M has size |B| × |X | and is defined by:

Mi,j =

{
1 if xj ∈ Bi

0 otherwise.

The code C based on T over Fq is the Fq-linear code having M as
parity-check matrix (C⊥ is generated by H).

I length(C) = |X |,
I dim(C) = dim(kerM),
I B ∈ B ⇒ h ∈ C⊥, such that wt(h|Gj

) = 1, ∀j = 1, . . . , `.
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Example

The transversal design TD(3, 3) represented by:

•
•
•

•
•
•

•
•
•

G1 G2 G3 B =

•
•
•

•
•
•

•
•
•

B1 ∪

•
•
•

•
•
•

•
•
•

B2 ∪

•
•
•

•
•
•

•
•
•

B3

gives an incidence matrix

H =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0


whose rank over F3 is 6. =⇒ C is a [9, 3]3 code.
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Our PIR protocol construction

Let C ⊆ Fn
q be a code based on a TD(`, s).

• Initialisation. User U encodes F 7→ c ∈ C, and gives c|Gj
to server Sj

for j = 1, . . . , `.

• To recover Fi = ci :
1. User U randomly picks a block B ∈ B containing i . Then U defines:

qj = Q(i)j :=

{
unique ∈ B ∩ Gj if i /∈ Gj

a random point in Gj otherwise.

2. each server Sj sends back aj = Aj(qj , c|Gj
) := cqj

3. U recovers

−
∑
j : i /∈Gj

cqj = −
∑

b∈B\{i}

cqj = ci
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Privacy and parameters

Theorem.– If the servers do not collude, then our PIR protocol is
information-theoretically private.

Proof:

– the only server which holds Fi received a random query;

– for each other server Sj , qj gives no information on the block B which has
been picked ⇒ no information leaks on i .

Properties. For |F | = k log q bits, with k = dim C ≤ n = s`.

I communication complexity: `(log s + log q) bits
I computational complexity:

I O(1) for algorithm A (somewhat optimal)
I O(`) Fq-operations for R

I storage overhead: (n − k) log q bits

Question: TDs with good k depending on (`, s)?
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A classical TD: points/lines/hyperplanes

Let TA be the classical affine TD:
I X = Fm

q , m ≥ 2,
I G a set of q disjoint hyperplanes partitionning X ,
I B = {affine lines L secant to each group of G}.

The associated Fq-linear code C has
I length n = qm

I block size ` = q

I dimension?

– its parity-check matrix has qm columns and q2m−2 rows...
– ... but C contains RMq(m, q − 2) which has rate ' 1/m!,
– and sometimes it is even larger.
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Lower bounds on rates of TD-based codes

rate R = k/n
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Particular case: m = 2

For m = 2, q = pe , using Hamada’s formula [Ham68] we obtain:

n = p2e , k ≥ p2e −
(
p + 1
2

)e

, ` =
√
n .

Asymptotically (e →∞, fixed p):{
R = k/n = 1−Θ(ncp )

` = Θ(
√
n)

where cp = 1
2 (logp( p+1

2 )− 1) < 0.

Moreover, cp ↗, with c2 = −0.208 and c∞ = 0.

Open question:
I is this instance rate-optimal?

[Ham68] N Hamada. The rank of the incidence matrix of points and d-flats in finite
geometries. J. of Science of the Hiroshima Univ., Series A-I (Maths), 32(2):381–396, 1968.
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TDs and orthogonal arrays

An orthogonal array OA(t, `, s) of strength t may be seen as a list of
codewords over S , with:

– |S | = s,
– length `,
– and dual distance d⊥ = t + 1

Construction OA → TD :
I X = S × [1, `]
I G = {S × {i}, 1 ≤ i ≤ `}

I B = {{(ci , i), 1 ≤ i ≤ `}, c ∈ OA}

S = {a, b}

OA(2, 3, 2) =


a b b
b b a
b a b
a a a



(a, 1) (a, 2) (a, 3)

(b, 1) (b, 2) (b, 3)

Prop. If t = 2, then we obtain a TD(`, s) from an OA(t, `, s).
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Resistance to collusions

Experiments: for t = 2 and small ` and s, the classical affine TD leads
to the best code dimension.

What about OA(t, `, s) with t > 2?
Resulting TD satisfies: for each t-tuple of points lying in t different
groups, there is a block which contains them all.

⇒ Our PIR protocol resists t − 1 collusive servers.
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The incidence code construction

Definition.– We call incidence code of C0, denoted Iq(C0), the Fq-linear
code C coming from the successive constructions:

C0 = OA(t, `, s) 7→ generalized TD(`, s; t) 7→ C = Iq(C0)

We derive PIR parameters from those of C0:
I d⊥(C0)− 2 is the number of collusive servers the protocol resists
I Iq(·) is decreasing w.r.t. inclusion of codes
⇒ the larger C0, the larger PIR storage overhead

let’s use MDS codes for C0
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Incidence codes of Reed-Solomon codes

Example: for C0 = RS(Fq, t + 1),
– |F | = Rq2 log q bits, with R the rate of the incidence code
– requires q servers, resists t colluding ones,
– communication complexity Θ(q log q),
– optimal computation complexity; rate R given by:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 8 10 12 14 16 18 20

t=1

t=2

t=4

t=log(q)

t=q1/2

t=q/8

t=q/2

t=q-1

Rate

log(n)

22/26 J. Lavauzelle Séminaire Crypto Rennes



Incidence codes of Reed-Solomon codes

Example: for C0 = RS(Fq, t + 1),
– |F | = Rq2 log q bits, with R the rate of the incidence code
– requires q servers, resists t colluding ones,
– communication complexity Θ(q log q),
– optimal computation complexity; rate R given by:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 8 10 12 14 16 18 20

t=1

t=2

t=4

t=log(q)

t=q1/2

t=q/8

t=q/2

t=q-1

Rate

log(n)

22/26 J. Lavauzelle Séminaire Crypto Rennes



Conclusion

Summary: (server-)efficient PIR protocols can be built with codes based
on transversal designs

Current issues:
I find transversal designs leading to largest codes,
I bounds, optimal constructions,
I (divisible projective linear codes C0 over large alphabets?).

PIR = very dynamic field:
I PIR capacity and optimal constructions,
I PIR on coded databases,
I partial PIR.

23/26 J. Lavauzelle Séminaire Crypto Rennes



Conclusion

Summary: (server-)efficient PIR protocols can be built with codes based
on transversal designs

Current issues:
I find transversal designs leading to largest codes,
I bounds, optimal constructions,
I (divisible projective linear codes C0 over large alphabets?).

PIR = very dynamic field:
I PIR capacity and optimal constructions,
I PIR on coded databases,
I partial PIR.

23/26 J. Lavauzelle Séminaire Crypto Rennes



Conclusion

Summary: (server-)efficient PIR protocols can be built with codes based
on transversal designs

Current issues:
I find transversal designs leading to largest codes,
I bounds, optimal constructions,
I (divisible projective linear codes C0 over large alphabets?).

PIR = very dynamic field:
I PIR capacity and optimal constructions,
I PIR on coded databases,
I partial PIR.

23/26 J. Lavauzelle Séminaire Crypto Rennes



Thank you for your attention.
Questions?
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Remarks on incidence codes

Proposition.– For any code C0 of length ` over Fs , the incidence code
Iq(C0) is an [n, k]q code with:

I n = s`,
I `− 1 ≤ k ≤ n − Ω(

√
n).

Proposition.– Let H be the parity-check matrix of Iq(C0). Then,

HHT = `J − D(C0) ,

where J is the all-1 matrix and

D(C0)c,c′ = d(c , c ′), ∀c , c ′ ∈ C0 .
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Divisible codes for efficient PIR protocols

A p-divisible code is a code whose codewords’ weights are divisible by p.

Corollary.– If C0 is p-divisible for p = char(Fq), then:

k = dim Iq(C0) ≥ n − 1
2

.

Furthermore, if p | `, then:

HHT = 0 ⇒ C⊥ ⊆ C

Theorem.– If there exists a p-divisible code C0 of length ` and dual
distance t + 2, then there exists a PIR protocol resisting to t colluding
servers, with rate & 1/2.

Question.– Do there exist projective (d⊥ ≥ 3) p-divisible codes of length
` over Fq (with q � `, or d⊥ large)?
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